

Microgel[™] para moldeo por inyección

Unidad de control de temperatura, de una zona (RCM) o de dos zonas (RCD), que consiste en un enfriador refrigerado por agua combinado con uno o dos controladores de temperatura con bombas de refuerzo de alto flujo, elementos de calefacción y válvula de enfriamiento libre.

Microgel es una unidad de refrigeración de moldes súper compacta diseñada específicamente para la "reducción del tiempo de refrigeración del ciclo".

Sincronizado digitalmente con una máquina de moldeo o reactor químico, permite investigar y registrar el mejor ajuste de caudal y temperatura para cada zona. optimizando la calidad del producto con el mínimo tiempo de enfriamiento del ciclo.

Gama disponible en 11 modelos para la versión de doble zona y 14 modelos para la versión de zona única con capacidad de enfriamiento de 4 a 180 kW, con capacidad de calentamiento de 6 a 48 kW.

Disponible con dos versiones de bombas de proceso:

- SP = bombas de presión estándar, de alto caudal
- HP = bombas de alta presión y alto caudal

La elección de los componentes, los procedimientos de montaje y las rigurosas pruebas finales del 100% de la producción garantizan un funcionamiento continuo con la máxima fiabilidad, incluso en las condiciones más difíciles.

Microgel para moldes o reactores químicos

Principales ventajas

- Sincronización con el proceso
- Aumento de la producción de hasta un 50% gracias a la Kits de drenaje de moldes y reactores disponibles reducción del tiempo de ciclo de hasta un 35%
- Uso inteligente del consumo de energía
- Gran ahorro de energía gracias al free-cooling automático
- Interfaz remota
- Interfaz de monitorización web
- Lecturas digitales de temperatura, caudal y presión (IN / OUT)

Control de temperatura del molde

 La temperatura del molde influye considerablemente en la calidad de la pieza moldeada y en el ciclo de trabajo.

Optimización del proceso de producción

- Capacidad de producción (reducción del ciclo, de los deshechos/chatarra y de los tiempos muertos)
- Calidad del producto (mejor estética y estabilidad dimensional constante)
- Reducción de costes operativos (reducción de deshechos/chatarra y ahorro de energía).

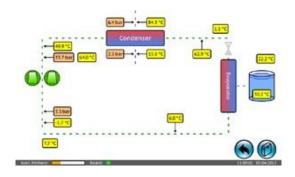
Beneficios para el proceso

- · Repetibilidad perfecta y alta productividad
- Posibilidad de buscar y almacenar las mejores condiciones de refrigeración
- Completa independencia en el ajuste de los parámetros de trabajo
- Control de presión caudal temperatura de cada proceso individual
- Precisión en el control de la temperatura del proceso
- Condiciones de refrigeración permanentemente estables y controladas
- Alta eficiencia de enfriamiento y mínima diferencia de temperatura en el molde
- Alta fiabilidad
- Máxima flexibilidad para eliminar los problemas conocidos del enfriamiento del proceso (condensación, apariencia de la pieza, respeto por los aspectos dimensionales).
- Máxima integración entre Microgel, máquina y operador

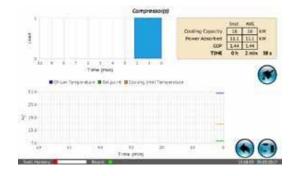
Beneficios para el usuario

- Bajo consumo de energía y rápida puesta en marcha
- Bajo consumo de energía de la bomba
- Bajas pérdidas relacionadas con pérdidas térmicas en el entorno
- Reducción de los tiempos muertos para el cambio de moldes y precalentamiento
- Bajo coste de mantenimiento (simple y rápido)
- Mínimo impacto ambiental, con hasta un 80% menos de refrigerante que un sistema centralizado
- Alto ahorro energético con la función "FREE-COOLING INDIVIDUAL"

>Microgel - RCD/RCM



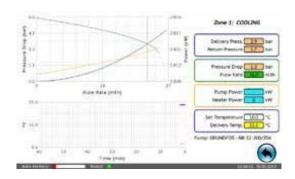
EJEMPLOS DE CONTROL DIGITAL en pantalla


Pantalla principal del usuario

- La codificación de colores indica qué parámetros están fuera de rango y qué componentes están activos, incluidos compresores, calentadores, bombas, válvulas de 3 vías y válvulas de llenado / free cooling.
- Sistema métrico o imperial seleccionable.

"Zona 1" o "Zona 2" del proceso

- Se indican todos los valores de la bomba, incluidas las presiones de suministro y retorno, ΔP, caudales calculados (valores reales con caudalímetros opcionales), así como los valores de Kw de la bomba y la calefacción
- Representaciones gráficas del rendimiento de la bomba y de las temperaturas.


Pantalla de registro de alarmas

- Lista y fecha de alarmas y avisos
- Guía rápida para la resolución de alarmas

Pantalla enfriadora

- Se indican todas las temperaturas y presiones del refrigerante, incluidos los valores de subenfriamiento y sobrecalentamiento
- Las presiones altas y bajas se indican mediante manómetros dibujados gráficamente en la pantalla.

Pantalla de rendimiento de la enfriadora

- Los últimos 60 minutos aparecen reportados en la pantalla
- El porcentaje de uso del compresor se representa gráficamente
- Capacidad de refrigeración, potencia absorbida y COP (coeficiente de rendimiento).

Características principales

Equipos de refrigeración

- Compresor Scroll
- Evaporador y condensador de placas soldadas de acero inoxidable
- Válvula barostática para el control continuo de la presión de condensación
- Sensores de presión y temperatura para el control del circuito
- Gas ecológico R407C

Equipo de distribución de agua

- Diseñado para proporcionar una presión y un caudal constantes tanto al proceso como al evaporador
- Una o dos bombas de proceso con cierres mecánicos especiales de alto rendimiento en cuanto a caudal y durabilidad
- Bomba de recirculación para garantizar un caudal constante al evaporador
- Termostato de seguridad para las resistencias
- Elementos calefactores de Incoloy de baja carga superficial
- Protección anticongelación
- Protección diferencial de alta/baja presión
- Sistema de control de temperatura con válvula modulante proporcional para cada zona, para un control preciso de la temperatura
- Puesta en marcha automática de la secuencia de ventilación y llenado de inicio
- Depósito intermedio de acero inoxidable aislado
- Filtro en el retorno del agua del proceso
- Válvulas de cierre incluidas en cada conexión hidráulica

Equipo eléctrico y de control

- Controlador de microprocesador desarrollado según las especificaciones de Frigel
- Tablero de control con pantalla táctil de 7"
- Posibilidad de instalar los sistemas de interfaz más conocidos para la comunicación con máquinas de producción y supervisión centralizada
- Monitorización completa del circuito de refrigeración e hidráulico
- Lógica de control proporcional-integral para el control de la temperatura con un error inferior a un ±1°C
- Procedimientos de carga y vaciado del circuito del molde o del reactor guímico
- · Alarma acústica estándar
- Señalización prolongada de la desviación del punto de set
- Protección de la sonda (interrumpida y/o cortocircuitada)
- Función de inicio/parada remota

Marco

- Hecho de chapa metálica plegada y pintada con polvo epoxi
- Paneles extraíbles
- Diseño compacto y equipado con ruedas

Opciones y accesorios

- Kit de drenaje: Kit hidráulico para permitir el drenaje automático del molde o reactor químico / usuario
- Interfaz en serie: Diferentes protocolos de interfaz en serie disponibles
- Alarma visual: Además de la alarma acústica instalada de serie
- Kit de aislamiento: para bajas temperaturas de funcionamiento

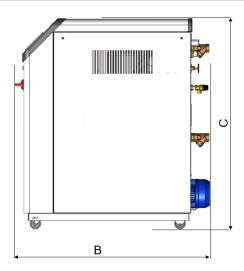
Conexión directa

Conexión a través del punto de acceso

Datos técnicos y dimensionales

Rcd-50 Hz


					N	/licrogel	- RCD								
Mode	lo		40/12	60/12	80/12	100/24	130/24	170/24-L	170/24	210/24	300/48	350/48	450/48		
Voltaje y frecuenc fue	ente alimenta	ación					40	00 V±10%/3/	50 Hz						
Capacidad de refrigeración	10°C/35°C (*)	Kw	7,3	10,5	16,1	20,4	26,7	34,2	34,2	41,9	55,8	69,8	89,1		
Cap. de calefacción	Kw			6+6				12+12			24+24				
Compresor	HP		3 4 6 8,5 10 13,5 13,5 15							20	25	30			
<u> </u>	Tipo							Scroll							
Bomba recirculación	Kw			0,37			0,55		1,	10	1,10	1,	50		
Bomba proceso SP (**)	Kw		0,75	1,	50		1,80		3,	00	5,50				
Bomba proceso HP (**)	Kw			1,50			2,20		5,	50					
Carga eléctrica máxima total y FLA	Bomba SP	Kw	15	16	16	29	29	30	34	36	61	64	69		
(Valor máx no		Α	24	27	30	47	49	51	55	60	96	105	115		
alcanzado durante la operación	Bomba	Kw	16	16	16	30	30	32	39	41	65	68	73		
estándar)	HP	Α	27	27	30	49	51	54	65	70	104	113	123		
Aire comprimido (mín.4 - máx. 7.5 bar)				-					S	í					
Nivel sonoro	dB(A) @ 1	0 m		3	39			40			4	41			
Peso neto	Kg		210	215	235	360	370	395	600	650	950	980	1.015		
Conexiones de proceso	en			G 1"			G 1 1/2"		G	2"	Victaulic de 3"				
Conexiones de refrigeración	en					G 1" G 1 1/2"					Victaulic de 2"				
Aire comprimido Conexiones	mm	mm - 6													


^(*) Las capacidades de enfriamiento se basan en el suministro a las temperaturas del agua de entrada del proceso / condensador y el delta del agua de proceso T = 2 $^{\circ}$ C

(**) Consulte las curvas de rendimiento de la bomba en la página 8

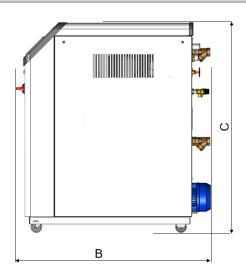
Voltaje de alimentación disponible: 400V±10%/3/50Hz; 460V±10%/3/60Hz; 380V±10%/3/60Hz; Bajo petición: Panel eléctrico UL para versiones de 60Hz Bombas clasificadas hasta 35% de glicol.

	Dimensión de la máquina													
ľ	Modelo	40/12	60/12	80/12	100/24	130/24	170/24-L	170/24	210/24	300/48	350/48	450/48		
Α	mm	450	450	450	540	540	540	630	630	950	950	950		
В	mm	910	910	910	1.210	1.210	1.210	1.790	1.790	1.850	1.850	1.850		
С	mm	1.110	1.110	1.110	1.420	1.420	1.420	1.470	1.470	1.470	1.470	1.470		
Los peso	Los pesos y dimensiones se refieren a unidades en configuración básica, sin opciones añadidas													

Datos técnicos y dimensionales

RCM-50 Hz

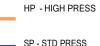
						Microg	el - RC	М							
Mod	lelo		40/6	60/6	80/6	100/12	130/12	170/12-L	170/12	210/12	300/24	350/24	450/24	700	900
Voltaje y frecuencia fue	ente de alime	entación		400 V±10%/3/50 Hz											
Capacidad de refrigeración	10°C/35°C (*)	Kw	7,3	10,5	16,1	20,4	26,7	34,2	34,2	41,9	55,8	69,8	89,1	140,0	178,0
Cap. de calefacción	K	W	6				12			24					
Compresor	Н	Р	3	4	6	8,5	10	13,5	13,5	15	20	25	30	2 x 25	2 x 30
·	Tip	00						Scro	II				Multi	scroll	
Bomba de recirculación	K	W		0,37			0,55		1,	10	1,10	1,	50	4,	00
Bomba de proceso SP (**)	K	0,75 1,50				1,80		3,	00		5,50	50		,00	
Bomba de proceso HP (**)	Kw		1,50				2,20		5,50			7,50		22	2,0
Carga eléctrica máxima total y FLA	Bomba	Kw	8	9	9	15	15	16	19	21	32	35	40	69	80
(Valor máximo no	SP	Α	13	15	18	25	27	29	32	37	51	60	69	117	135
alcanzado durante la operación	Bomba	Kw	9	9	9	16	16	17	21	24	34	37	42	80	91
estándar)	HP	Α	15	15	18	26	28	31	37	42	55	64	73	136	154
Aire comprimido (min. 4-máximo 7,5 bar)				-						Sí					
Nivel sonoro	dB(A)	@ 10 m			39			40				41			
Peso neto	K	g	180	185	195	295	300	340	500	550	770	810	880	1.380	1.445
Conexiones de proceso	е	n		G 1"			G 1 1/2"		G 2"		Victaulic		le 3"	Victauli	c de 4"
Conexiones de refrigeración	е	en				G 1"	G 1" G 1 1/2" Victaulic de 2"					Victauli	c de 3"		
Aire comprimido Connexiones	m	mm			- 6										

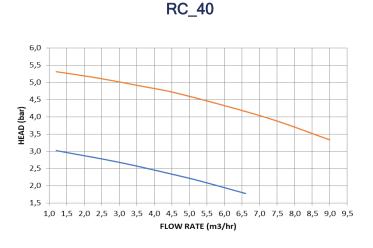

^(*) Las capacidades de enfriamiento se basan en el suministro a las temperaturas del agua de entrada del proceso / condensador y el delta del agua de proceso T = 2 $^{\circ}$ C

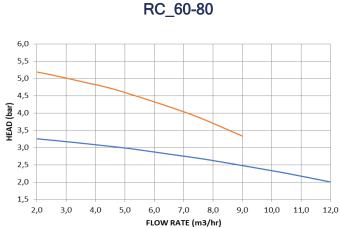
(**) Consulte las curvas de rendimiento de la bomba en la página 8

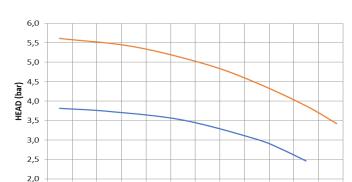
Voltaje de alimentación disponible: $400V\pm10\%/3/50Hz$; $460V\pm10\%/3/60Hz$; $380V\pm10\%/3/60Hz$. Bajo petición: Panel eléctrico UL para versiones de 60 Hz Bombas clasificadas hasta 35% de glicol.

	Dimensión de la máquina													
Mo	odelo	40/6	60/6	80/6	100/12	130/12	170/12-L	170/12	210/12	300/24	350/24	450/24	700	900
Α	mm	450	450	450	540	540	540	630	630	950	950	950	950	950
В	mm	910	910	910	1.210	1.210	1.210	1.790	1.790	1.850	1.850	1.850	2.380	2.380
С	C mm 1.110 1.110 1.110 1.420 1.420 1.420 1.420 1.470 1.470 1.470 1.470 1.470 1.500 1.500													
Los pesos y o	Los pesos y dimensiones se refieren a unidades en configuración básica, sin opciones añadidas													

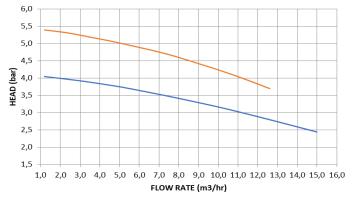


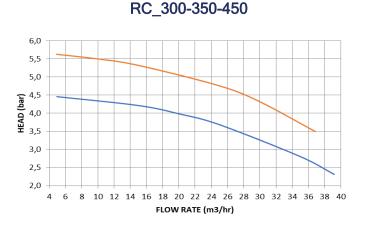

Curvas de las bombas de proceso

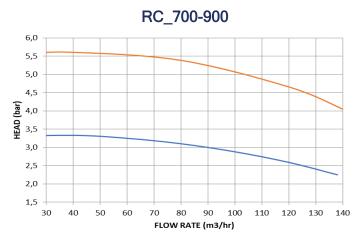

50Hz


RCM: Bomba única, una sola zona

RCD: Dos bombas, doble zona







11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0

RC_170-210

FLOW RATE (m3/hr)

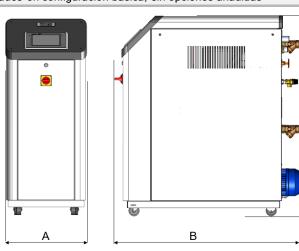
ESP

3,0 5,0 7,0

9,0

Datos técnicos y dimensionales

RCD-60 Hz


					M	icrogel -	RCD						
Mod	elo		40/12	60/12	80/12	100/24	130/24	170/24-L	170/24	210/24	300/48	350/48	450/48
Voltaje y frecuencia	fuente alime	entación					4	60±10%/3/6	60Hz				
Capacidad de refrigeración	10°C/35°C (*)	Kw	8,8	12,5	19,8	24,8	31,0	41,4	41,4	51,3	67,1	83,3	106,0
Capacidad de calefacción	Kv	V		6+6				12+12					
Compresor	Н		3									25	30
Compresor	Tip	00	Scroll										
Bomba de recirculación	Kv	V		0,55			0,75		1,	10	1,50	1,	50
Bomba de proceso SP (**)	Kv	v	1,10	1,	50		2,20		3,	00		5,50	
Bomba de proceso HP (**)	Kv	v	1,50	2,2	20		3,00		5,	50		7,50	
Carga eléctrica máxima total y FLA	Bomba	Kw	16	16	18	30	31	34	36	40	63	70	77
,	SP	A 380V	25	27	28	48	52	57	62	68	105	106	116
(Valor máximo no alcanzado durante		A 460V	21	25	27	42	46	49	53	58	94	103	113
la operación		Kw	16	17	19	32	33	37	41	45	67	74	81
estándar)	Bomba	A 380V	27	29	30	52	56	63	74	77	113	114	124
	HP	A 460V	24	26	28	44	49	53	60	65	102	111	121
Aire comprimido mín.4-máx.7.5 bar				-					Si				
Nivel sonoro	dB(A) @	0 10 m		(39			40			4	1	
Peso neto	Κg)	210	215	235	360	370	395	600	650	950	980	1.015
Conexiones de proceso	er	1		G 1"		G 1 1/2"			G	2"	\	le 3"	
Conexiones de refrigeración	er	1				G 1" G 1 1/2"					Victaulic de 2"		
Aire comprimido Conexiones	mr	n	- 6										

^(*) Las capacidades de enfriamiento se basan en el suministro a las temperaturas del agua de entrada del proceso / condensador y el delta del agua de proceso T = 2 $^{\circ}$ C

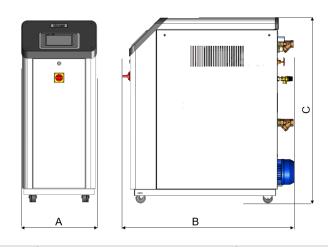
(**) Consulte las curvas de rendimiento de la bomba en la página 8

Voltaje de alimentación disponible: 400V±10%/3/50Hz; 460V±10%/3/60Hz; 380V±10%/3/60Hz Bajo petición: Panel eléctrico UL para versiones de 60 Hz Bombas clasificadas hasta 35% de glicol

	Dimensión de la máquina													
	Modelo	40/12	60/12	80/12	100/24	130/24	170/24-L	170/24	210/24	300/48	350/48	450/48		
Α	mm	450	450	450	540	540	540	630	630	950	950	950		
В	mm	910	910	910	1.210	1.210	1.210	1.790	1.790	1.850	1.850	1.850		
С	mm	1.110	1.110	1.110	1.420	1.420	1.420	1.470	1.470	1.470	1.470	1.470		
Los pesos	os pesos y dimensiones se refieren a unidades en configuración básica, sin opciones añadidas													

Datos técnicos y dimensionales

RCM - 60 Hz

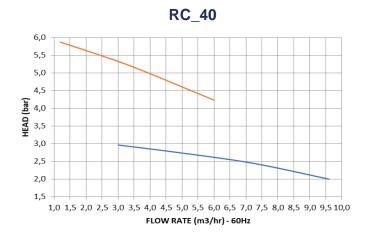

						Microg	el - RC	М							
Mod	elo		40/6	60/6	80/6	100/12	130/12	170/12-L	170/12	210/12	300/24	350/24	450/24	700	900
Voltaje y frecuencia fu	uente de alin	nentación	460±10%/3/60Hz												
Capacidad de refrigeración	10°C/35°C (*)	Kw	8,8	12,5	19,8	24,8	31,0	41,4	41,4	51,3	67,1	83,3	106,0	167,0	212,0
Capacidad de calefacción	k	(w	6					12				24		-	-
Compresor	F	HP.	3	4	6	7,5	10	13,5	13,5	15	20	25	30	2 x 25	2 x 30
	Т	ipo	Scroll						II					Multi	scroll
Bomba de recirculación	k	(w	0,55				0,75		1,	10	1,50 1,50			4,00	
Bomba de proceso SP (**)	k	Kw		1,10 1,50			2,20			00	5,50			11,	00
Bomba de proceso HP (**)	k	1,50 2,20				3,00		5,50			7,50		22,00		
Carga eléctrica máxima total y FLA	Bomba	Kw	8	9	10	16	16	20	21	25	34	41	47	81	94
maxima total y I LA	SP	A 380V	14	15	15	26	30	34	38	44	60	62	72	121	141
(Valor máximo no		A 460V	12	14	16	23	27	29	32	37	51	60	70	117	137
alcanzado durante la operación		Kw	9	10	11	17	17	21	24	27	36	43	49	92	105
estándar)	Bomba	A 380V	15	16	16	27	31	37	42	48	64	66	76	141	161
	HP	A 460V	13	14	16	24	28	31	36	41	55	64	74	133	153
Aire comprimido (min.4- máx 7,5 bar)				-						Sí					
Nivel sonoro	dB(A)	@10 m			39			40				41			
Peso neto	ŀ	K g	180	185	195	295	300	340	500	550	770	810	880	1.380	1.445
Conexiones de proceso	•	en		G 1"			G 1 1/2"			G 2"		/ictaulic d	e 3"	Victaulio	: de 4"
Conexiones de refrigeración	•	en		G 1" G 1 1/2" Victaulic de 2"						e 2"	Victaulio	: de 3"			
Aire comprimido Conexiones	n	nm	- 6												

^(*) Las capacidades de enfriamiento se basan en el suministro a las temperaturas del agua de entrada del proceso / condensador y el delta del agua de proceso T = 2 $^{\circ}$ C

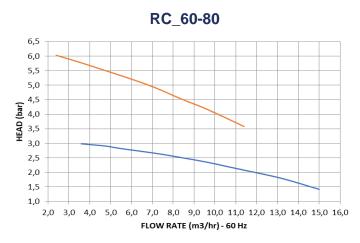
(**) Consulte las curvas de rendimiento de la bomba en la página 8

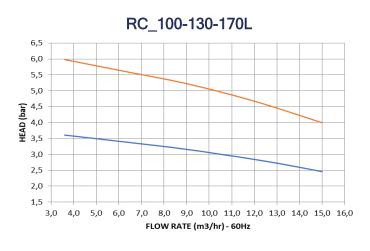
Voltaje de alimentación disponible: $400V\pm10\%/3/50Hz$; $460V\pm10\%/3/60Hz$; $380~V\pm10\%/3/60~Hz$ Bajo petición: Panel eléctrico UL para versiones de 60Hz Bombas clasificadas hasta un 35% de glicol

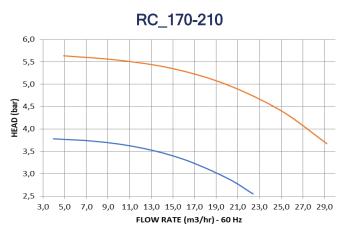
	Dimensión de la máquina														
Modelo 40/6 60/6 80/6 100/12 130/12 170/12-L 170/12 210/12 300/24 350/24 450/24 700												900			
Α	mm	450	450	450	540	540	540	630	630	950	950	950	950	950	
В	mm	910	910	910	1.210	1.210	1.210	1.790	1.790	1.850	1.850	1.850	2.380	2.380	
С	mm	1.110	1.110	1.110	1.420	1.420	1.420	1.470	1.470	1.470	1.470	1.470	1.500	1.500	
Los pesos	os pesos y dimensiones se refieren a unidades en configuración básica, sin opciones añadidas														

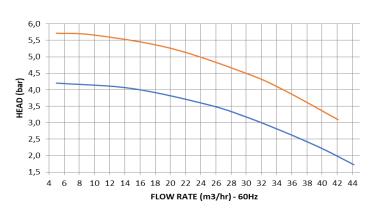

Curvas de las bombas de proceso

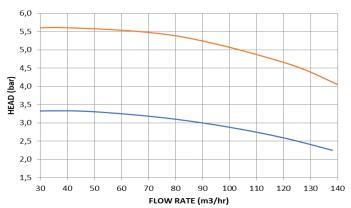
60 Hz


HP - HIGH PRESS


____ SP - STD PRESS

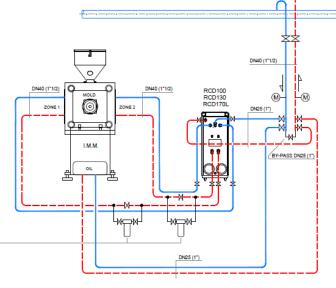

RCM: Bomba única, una sola zona


RCD: Dos bombas, doble zona

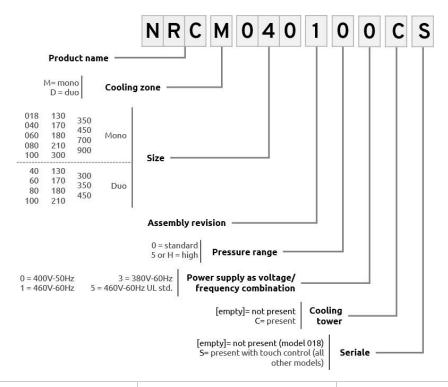


RC 300-350-450

RCM 700-900



Ejemplo de conexión



Esquema típico de un sistema de refrigeración de moldeo por inyección (Sistema Ecodry) con **Microgel** para cada molde.

Diagrama de conexión típico de un Microgel Serie RCD al moldeado por inyección y al circuito centralizado

Código de pedido

RCD-SPECS.SI. ESP.5060.A4.05.01